An Alignment-Based Approach to Semi-supervised Relation Extraction Including Multiple Arguments
نویسندگان
چکیده
We present an alignment-based approach to semi-supervised relation extraction task including more than two arguments. We concentrate on improving not only the precision of the extracted result, but also on the coverage of the method. Our relation extraction method is based on an alignment-based pattern matching approach which provides more flexibility of the method. In addition, we extract all relationships including two or more arguments at once in order to obtain the integrated result with high quality. We present experimental results which indicate the effectiveness of our method.
منابع مشابه
Using Graphs of Classifiers to Impose Declarative Constraints on Semi-supervised Learning
We propose a general approach to modeling semisupervised learning (SSL) algorithms. Specifically, we present a declarative language for modeling both traditional supervised classification tasks and many SSL heuristics, including both well-known heuristics such as co-training and novel domainspecific heuristics. In addition to representing individual SSL heuristics, we show that multiple heurist...
متن کاملA New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model
Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...
متن کاملAn Unsupervised Text Mining Method for Relation Extraction from Biomedical Literature
The wealth of interaction information provided in biomedical articles motivated the implementation of text mining approaches to automatically extract biomedical relations. This paper presents an unsupervised method based on pattern clustering and sentence parsing to deal with biomedical relation extraction. Pattern clustering algorithm is based on Polynomial Kernel method, which identifies inte...
متن کاملSemi-supervised Relation Extraction with Large-scale Word Clustering
We present a simple semi-supervised relation extraction system with large-scale word clustering. We focus on systematically exploring the effectiveness of different cluster-based features. We also propose several statistical methods for selecting clusters at an appropriate level of granularity. When training on different sizes of data, our semi-supervised approach consistently outperformed a st...
متن کاملUsing Corpus Statistics on Entities to Improve Semi-supervised Relation Extraction from the Web
Many errors produced by unsupervised and semi-supervised relation extraction (RE) systems occur because of wrong recognition of entities that participate in the relations. This is especially true for systems that do not use separate named-entity recognition components, instead relying on general-purpose shallow parsing. Such systems have greater applicability, because they are able to extract r...
متن کامل